Analytics
Analytics provides a simple, interactive, UI-driven approach to machine learning. It provides a seamless, automated interface for users to easily develop, train, test, evaluate and deploy their machine learning models. It reduces the need for ad-hoc custom tooling and promotes reusability and collaboration.
Go to DocumentationAnalytics features
UI driven data wrangler and cleansing
Seamless, integrated experience from data preparation and cleansing to model development, evaluation and deployment.
Support for popular ML libraries
Out of the box support for common ML libraries such as SparkML
Scoring plugins for running predictions
Built in scoring plugins take you from model development to running predictions on data in a few seconds.
Model evaluation
Integrated metrics and visualization that provides rich summaries and graphs for evaluating model performance.
Automated training and test data split
Automated splitting into training and test datasets reduces the need for custom tooling.
Hyperparameter tuning
Switches and knobs for advanced users to tune model performance using hyperparameters
Model Lifecycle Management
Automated model lifecycle management from deployment to promotion and retiring.
Videos
Rapid Time to Value with CDAP: Enterprise-Ready Machine Learning in under Three Minutes
#BDAM: Machine Learning for the Masses, by Albert Shau, Cask